

CoTeDe: Quality Control of Oceanographic Data

User Documentation

CoTeDe at a glance

	Overview

	Installation

	Data Model

	Getting Started with CoTeDe

	Tests for Quality Control

Help & reference

	API reference

	Used by

	History

Indices and tables

	Index

	Module Index

	Search Page

Overview

CoTeDe

[image: _images/status.svg]
 [https://doi.org/10.21105/joss.02063][image: _images/10284681.svg]
 [https://zenodo.org/badge/latestdoi/10284681][image: Documentation Status]
 [https://cotede.readthedocs.io/en/latest/?badge=latest][image: _images/badge.svg]
 [https://github.com/castelao/CoTeDe/actions/workflows/ci.yml)][image: _images/badge1.svg]
 [https://codecov.io/gh/castelao/CoTeDe][image: _images/cotede.svg]
 [https://pypi.python.org/pypi/cotede][image: _images/badge_logo.svg]
 [https://mybinder.org/v2/gh/castelao/CoTeDe/master?filepath=docs%2Fnotebooks]CoTeDe [http://cotede.castelao.net] is an Open Source Python package to quality control (QC) oceanographic data such as temperature and salinity.
It was designed to attend individual scientists as well as real-time operations on large data centers.
To achieve that, CoTeDe is highly customizable, giving the user full control to compose the desired set of tests including the specific parameters of each test, or choose from a list of preset QC procedures.

I believe that we can do better than we have been doing with more flexible classification techniques, which includes machine learning. My goal is to minimize the burden on manual expert QC improving the consistency, performance, and reliability of the QC procedure for oceanographic data, especially for real-time operations.

CoTeDe is the result from several generations of quality control systems that started in 2006 with real-time QC of TSGs and were later expanded for other platforms including CTDs, XBTs, gliders, and others.

Why CoTeDe

CoTeDe contains several QC procedures that can be easily combined in different ways:

	Pre-set standard tests according to the recommendations by GTSPP, EGOOS, XBT, Argo or QARTOD;

	Custom set of tests, including user defined thresholds;

	Two different fuzzy logic approaches: as proposed by Timms et. al 2011 & Morello et. al. 2014, and using usual defuzification by the bisector;

	A novel approach based on Anomaly Detection, described by Castelao 2021 [https://doi.org/10.1016/j.cageo.2021.104803] (available since 2014 http://arxiv.org/abs/1503.02714).

Each measuring platform is a different realm with its own procedures, metadata, and meaningful visualization.
So CoTeDe focuses on providing a robust framework with the procedures and lets each application, and the user, to decide how to drive the QC.
For instance, the pySeabird package [http://seabird.castelao.net] is another package that understands CTD and uses CoTeDe as a plugin to QC.

Documentation

A detailed documentation is available at http://cotede.readthedocs.org, while a collection of notebooks with examples is available at
http://nbviewer.ipython.org/github/castelao/CoTeDe/tree/master/docs/notebooks/

Citation

If you use CoTeDe, or replicate part of it, in your work/package, please consider including the reference:

Castelão, G. P., (2020). A Framework to Quality Control Oceanographic Data. Journal of Open Source Software, 5(48), 2063, https://doi.org/10.21105/joss.02063

@article{Castelao2020,
 doi = {10.21105/joss.02063},
 url = {https://doi.org/10.21105/joss.02063},
 year = {2020},
 publisher = {The Open Journal},
 volume = {5},
 number = {48},
 pages = {2063},
 author = {Guilherme P. Castelao},
 title = {A Framework to Quality Control Oceanographic Data},
 journal = {Journal of Open Source Software}
}

For the Anomaly Detection techinique specifically, which was implemented in CoTeDe, please include the reference:

Castelão, G. P. (2021). A Machine Learning Approach to Quality Control Oceanographic Data. Computers & Geosciences, https://doi.org/10.1016/j.cageo.2021.104803

@article{Castelao2021,
 doi = {10.1016/j.cageo.2021.104803},
 url = {https://doi.org/10.1016/j.cageo.2021.104803},
 year = {2021},
 publisher = {Elsevier},
 author = {Guilherme P. Castelao},
 title = {A Machine Learning Approach to Quality Control Oceanographic Data},
 journal = {Computers and Geosciences}
}

If you are concerned about reproducibility, please include the DOI provided by Zenodo on the top of this page, which is associated with a specific release (version).

Note

On version 0.20 there was an inversion of roles and instead of depending on
PySeabird package [http://seabird.castelao.net], now CoTeDe is an
independent package that can be installed as an extra-requirement of
PySeabird package [http://seabird.castelao.net]. The functionalities
to quality control CTD and TSG are now in the package PySeabird. This
allowed CoTeDe to focus on QC and better generalize for other platforms
and instruments.

Installation

CoTeDe was intentionally kept simple, avoiding dependencies, but when inevitable it uses fundamental libraries. There are indeed many benefits from modern libraries like pandas and xarray (yes, CoTeDe is old), but the goal was to allow other applications to adopt CoTeDe with ease. The optional extras allows some expansion.

Requirements

	Python [http://www.python.org/] 2.7 or 3.X (recommended >=3.7)

	Numpy [http://www.numpy.org] (>=1.11)

	Scipy [https://www.scipy.org] (>=0.18.0)

Optional requirement

	GSW [https://github.com/TEOS-10/GSW-Python]: a Python implementation of the Thermodynamic Equation of Seawater 2010 (TEOS-10). It is used to derive variables like sea water density from pressure, temperature, and salinity.

	OceansDB [https://pypi.python.org/pypi/OceansDB]: a database of climatologies and bathymetry of the oceans. It is a requirement for tests like valid position at sea, climatology comparison, and others.

	Matplotlib [http://matplotlib.org]: a powerfull library for data visualization. It is required for the graphic tools, like the visual inspection and classification of the data.

	Shapely [https://github.com/Toblerity/Shapely]: a Python package for computational geometry. It is required by the Regional Range test to evaluate which measurements are inside the considered domain.

Installing CoTeDe

Virtual Environments

You don’t need to, but I strongly recommend to use virtualenv [https://virtualenv.pypa.io/en/stable/] or conda [https://conda.io/en/latest/].

Using pip

If you don’t already have PIP running on your machine, first you need to install pip [https://pip.pypa.io/en/stable/installing.html], then you can run:

$ pip install cotede

Custom Install

To install with GSW support, which allows to estimate density on the fly, you can run:

pip install cotede[GSW]

To install with OceansDB in order to be able to run climatology tests, you can run:

pip install cotede[OceansDB]

To install multiple extras:

pip install cotede[GSW,OceansDB,Shapely]

Last night’s version

It is possible to install the latest version directly from the oven but, like a good bread, it might not taste as good as if you wait it to cool down:

$ pip install git+https://github.com/castelao/CoTeDe.git

If you can, use the standard pip install as shown previously.

Custom setup

The directory ~/.config/cotederc is the default home directory for CoTeDe support files, including the user custom QC setup.
To use another directory, one can set and environment variable COTEDE_DIR.
For example, if you use bash you could include the following lines in your .barsh_profile:

$ export COTEDE_DIR='~/my/different/path'

Optional

Climatology and bathymetry

The climatology comparison test and the at sea test use the package OceansDB, which maintains local files with the climatologies and bathymetry. Those files are automatically downloaded on the first time that they are required, but you can force the download by executing:

>>> import oceansdb; oceansdb.CARS()['sea_water_temperature']
>>> import oceansdb; oceansdb.WOA()['sea_water_temperature']
>>> import oceansdb; oceansdb.ETOPO()['topography']

That will create, if it doesn’t already exist, a directory in your home: ~/.config, and place the required WOA, CARS, and etopo files there.
That is it, you’re ready to run cotede in place with any of the preset configurations.
If you’re going to a cruise, remember to run this before leave the dock, while you still have cheap and fast access to the network.

Data Model

Inside CoTeDe, the dataset to be analyzed is treated as a single object that contains all variables (temperature, salinity, fluorescence, …), coordinates (pressure, depth, …), and metadata.
This data model is the same independent of the sampling platform, therefore, temperature measurements collected by an XBT, a Spray glider, a CTD rosette, a mooring or a Saildrone are all accessed in the same way.
The difference is that each case might use a different set of QC tests, and each test decides what should be used to evaluate the quality of the dataset.

Other applications can connect with CoTeDe by providing the data using this data model.
For example, pySeabird [http:/seabird.castelao.net] is another Python package able to parse CTD raw data and organize it as described on this session before calling CoTeDe to QC the profiles.

Data

Each variable is expected to be accessible as an item of the dataset object, and it should return a sequence, preferably a numpy array.
Considering a dataset named ‘ds’, to access the temperature:

$ ds['TEMP']
>>> masked_array(data=[17, 16.8, 16], mask=False, fill_value=1e+20)

Coordinates and other auxiliary variables with the same dimension of the variable of interest should be available on the same way, thus for a profile the depth of each measurement would be accessible as:

$ ds['DEPTH']
>>> masked_array(data=[0, 10, 20], mask=False, fill_value=999999)

Metadata

Scalar metadata representative for the whole dataset should be available in the property attrs. For example, to obtain the nominal time of a CTD cast:

$ ds.attrs['datetime']
>>> datetime.datetime(2019, 11, 22, 5, 15, 57, 619332)
>>> numpy.datetime64('2019-11-22T05:16:56.932129')

or the nominal latitude of a mooring:

$ ds.attrs['latitude']
>>> 15

but if latitude has the same dimension of the data, like the along track latitude for a TSG, it should be available together with the data, like:

$ ds['latitude']
>>> masked_array(data=[14.998, 15.0, 15.001], mask=False, fill_value=np.nan)

Note

Numpy masked array is the prefered choice. In that case, whatever is masked
will be considered that the data is unavailable. If not using masked arrays
, missing data should be assigned with np.nan.

Minimalist solution

Possibly the simplest model to achieve that is:

class CoTeDeDataset(object):
 def __init__(self):
 self.attrs = {}
 self.data = {}

 def __getitem__(self, key):
 return self.data[key]

 def keys(self):
 return self.data.keys()

So that:

$ ds = CoTeDeDataset()
$ ds.data['TEMP'] = np.array([15, 14.8, 14.3])
$ ds.attrs['longitude'] = -38
...

Check the data model notebook [https://github.com/castelao/CoTeDe/tree/master/docs/notebooks] for a complete example on how to use it.

Getting Started with CoTeDe

To quality control CTD or TSG, please check the package pySeabird [https://github.com/castelao/seabird].

Inside python

First load the module

>>> import cotede

With a data object from a CTD as described in the Data Model section, we can run the QC

>>> pqc = cotede.ProfileQC(ds)

The keys() will give you the data loaded from the CTD, similar to the ds itself

>>> pqc.keys()

To see one of the variables listed on the previous step

>>> pqc['sea_water_temperature']

The flags are stored at pqc.flags and is a dictionary, being one item per variable evaluated. For example, to see the flags for the salinity instrument

>>> pqc.flags['sea_water_salinity']

or for a specific test

>>> pqc.flags['sea_water_salinity']['gradient']

The class cotede.ProfileQCed is equivalent to the cotede.ProfileQC, but it already masks the non approved data (flag > 2). It can also be used like

>>> p = cotede.ProfileQCed(data)
>>> p['sea_water_temperature']

To choose which QC criteria to apply

>>> pqc = cotede.ProfileQC(ds, 'cotede')

or

>>> pqc = cotede.ProfileQC(ds, 'gtspp')

To define manually the test to apply

>>> pqc = cotede.ProfileQC(ds, {'sea_water_temperature': {'gradient': {'threshold': 6}}})

More examples

I keep a notebooks collection of practical examples to Quality Control CTD data [http://nbviewer.ipython.org/github/castelao/cotede/tree/master/docs/notebooks/]
.
If you have any suggestion, please let me know.

Tests for Quality Control

An automatic quality control is typically a composition of checks, each one looking for a different aspect to identify bad measurements.
This section covers the concept of the available checks and some ways how those could be combined.

A description and references for each test are available in qctests.
The result of each test is a flag ranking the quality of the data as described in Flags.
Finally, most of the users will probably follow one of the recommended procedures (GTSPP, Argo, QARTOD …) described in Quality Control Procedures.
If you are not sure what to do, start with one of those QC procedures and later fine tune it for your needs.
The default procedure for CoTeDe is the result of my experience with the World Ocean Database.

Flags

The outcome of the QC evaluation is encoded following the IOC recommendation given in the table below
For example, if the climatology database is not available, the output flag would be 0, while a fail on the same climatology test would return a flag 3, if following the GTSPP recommendations.
By the end of all checks, each measurement receives an overall flag that is equal to the highest flag among all tests applied. Therefore, one mesurement with flag 0 was not evaluated at all, while a measurement with overall flag 4 means that at least one check considered that a bad data.

	Flag

	Meaning

	0

	No QC was performed

	1

	Good data

	2

	Probably good data

	3

	Probably bad data

	4

	Bad data

	9

	Missing data

The flags 2 and 3 usually cause some confusion: “What do you mean by probably good or bad?”
The idea is to allow some choice for the final user.
The process of defining the criteria for any QC test is a duel between minimizing false positives or false negatives, thus it is a choice: What is more important for you?
There is no unique answer for all cases.
Most of the users will use anything greater than 2 as non-valid measurements.
Someone willing to pay the price of loosing more data to avoid by all means any bad data would rather discard anything greater than 1.
While someone more concerned in not wasting any data, even if that means a few mistakes, would discard anything greater than 3.
When designing a test or defining a new threshold, please assume that flag 4 is pretty confident that is a bad measurement.

It is typically expected to have one flag for each measurement in the dataset, but it is possible to have a situation with a single flag for the whole dataset.
For instance, if a profile is checked only for a valid geolocation, it would get a single flag for the whole profile.

Some procedures also provide a continuous scale usually representing the probablity of a measurement being good, like the Anomaly Detection and the Fuzzy Logic.
For details on that, please check the description of the specific check.

Quality Control Procedures

Although I slightly modified the names of some Q.C. test, the concept behind is still the same.
The goal was to normalize all tests to return True if the data is good and False if the data is bad.
For example, Argo’s manual define “Impossible Date Test”, while here I call it “Valid Date”.

Profile

GTSPP

	Test

	Flag

	Threshold

	
	if succeed

	if fail

	Temperature

	Salinity

	Valid Date

	1

	4

	

	Valid Position

	1

	
	

	Location at Sea

	1

	
	

	Global Range

	1

	
	-2 to 40 C

	0 to 41

	Gradient

	1

	4

	10.0 C

	5

	Spike

	1

	
	2.0 C

	0.3

	Climatology

	1

	
	

	Profile Envelop

	
	
	

EuroGOOS

	Test

	Flag

	Threshold

	
	if succeed

	if fail

	Temperature

	Salinity

	Valid Date

	1

	4

	

	Valid Position

	1

	4

	

	Location at Sea

	1

	4

	

	Global Range

	1

	4

	-2.5 to 40

	2 to 41

	Digit Rollover

	1

	4

	10.0 C

	5

	
	Gradient Depth Conditional
	
	< 500

	> 500

	1

	4

	
	9.0 C

	3.0 C

	
	1.5

	0.5

	
	Spike Depth Conditional
	
	< 500

	> 500

	1

	4

	
	6.0 C

	2.0 C

	
	0.9

	0.3

	Climatology

	1

	
	

Argo (Incomplete)

	Test

	Flag

	Threshold

	
	if succeed

	if fail

	Temperature

	Salinity

	Platform Identification

	
	
	

	Valid Date

	
	
	

	Impossible location test

	
	
	

	Position on land test

	
	
	

	Impossible speed test

	
	
	

	Global Range

	
	
	

	Regional Range

	
	
	

	Pressure increasing

	
	
	

	Spike

	
	
	

	Top an dbottom spike test: obsolete

	
	
	

	Gradient (obsolete in 2020)

	
	
	

	Digit Rollover

	
	
	

	Stuck value test

	
	
	

	Density Inversion

	
	
	

	Grey list

	
	
	

	Gross salinity or temperature sensor drift

	
	
	

	Visual QC

	
	
	

	Frozen profile test

	
	
	

	Deepest pressure test

	
	
	

IMOS (Incomplete)

	Test

	Flag

	Threshold

	
	if succeed

	if fail

	Temperature

	Salinity

	Valid Date

	1

	3

	

	Valid Position

	1

	3

	

	Location at Sea

	1

	3

	

	Global Range

	1

	
	-2.5 to 40

	2 to 41

	Gradient

	1

	4

	10.0 C

	5

	Spike

	1

	
	2.0 C

	0.3

	Climatology

	1

	
	

QARTOD (Incomplete)

	Test

	Flag

	Threshold

	
	if succeed

	if fail

	Temperature

	Salinity

	Gap

	
	
	

	Syntax

	
	
	

	Location at Sea

	
	
	

	Gross Range

	
	
	
	

	Climatological

	
	
	

	Spike

	
	
	
	

	Rate of Change

	
	4

	
	

	Flat Line

	
	
	
	

	Multi-Variate

	
	
	
	

	Attenuated Signal

	
	
	

	Neighbor

	
	
	

	TS Curve Space

	
	
	

	Density Inversion

	
	3

	0.03 kg/m3

TSG

Based on AOML procedure. Realtime data is evaluatd by tests 1 to 10, while the delayed mode is evaluated by tests 1 to 15.

	Platform Identification

	Valid Date

	Impossible Location

	Location at Sea

	Impossible Speed

	Global Range

	Regional Range

	Spike

	Constant Value

	Gradient

	Climatology

	NCEP Weekly analysis

	Buddy Check

	Water Samples

	Calibrations

XBT

References

Index

 _
 | C
 | L
 | P

_

 	
 	__init__() (cotede.ProfileQC method)

C

 	
 	cotederc() (in module cotede.utils)

L

 	
 	list_cfgs() (in module cotede.utils)

 	
 	load_cfg() (in module cotede.utils)

P

 	
 	ProfileQC (class in cotede)

Anomaly Detection

Anomaly Detection is based on the concept of describe the statistical behaivior of known good data, and than use this as a reference to identify bad data by uncommon characteristics.

Some funcionalities

rank_files()

From a list of data files, analyze all and characterize each measurement by a series of features, like for example the gradient or the difference with the climatology.
Than, rank all files based on how unexpected is each feature, i.e. a measurement with a spike too intense, or too different from the climatology would show up first.

rank_files(datadir, varname, cfg=None)

	datadir: root directory with the data to be evaluated

	varname: Variable to be evaluated, like TEMP

	cfg: Q.C. rule to be considered

Return a list of all files inside datadir ordered by the probablity of being all good data.

Calibrate Anomaly Detection

Calibrate the parameters for anomaly detection to best reproduce a preset Q.C. rule (for example: GTSPP).
Since the anomaly detection consider simultaneously several features together to make a final decision, it should achieve more consistent results.
A measurement with several tests too close to the traditional Q.C. thresholds would be approved by the traditional approach, but would raise suspicious, or even fail, in the anomaly detection approach.

calibrate_anomaly_detection(datadir, varname, cfg=None)

API reference

The public API resources are listed below.
All the rest of CoTeDe is considered support infrastructure and there is no reason to use or access explicitly what is not shown here.
I do intend to expand these resources in the near future, but this is what is available now.

Top-level resources

	ProfileQC(input[, cfg, saveauxiliary, ...])

	Quality Control a CTD profile

Utils

	utils.cotederc([subdir])

	Directory with custom configuration for CoTeDe

	utils.list_cfgs()

	List the available QC procedures, builtin + local

	utils.load_cfg([cfgname])

	Load a QC configuration

Fuzzy Logic

This is the implementation of the methodoogy proposed by Timms 2011, Morello 2011 and Morello 2014.
If interested in this technique, I strongly recommend you to read those articles.
Figure 6 of Morello 2014 values a thousand words.

History

0.20 - Jul, 2018

	Removing dependency on pySeabird [https://github.com/castelao/seabird] and pyArgo.
Inversion of roles to generalize CoTeDe for other uses. Before CoTeDe would depend on pySeabird, but now CoTeDe is an optional requirement for pySeabird to QC CTD and TSG.

0.19

	CARS features and flags

0.17 - Mar, 2016

	Implementing fuzzy procedures inside CoTeDe, thus removing dependency on scikit-fuzzy. scikit-fuzzy is broken, hence compromising tests and development of CoTeDe.

0.16 - Mar, 2016

	Using external package OceansDB [https://github.com/castelao/oceansdb] to handle climatologies and bathymetry.

0.15 - Dec, 2015

	Moved procedures to handle climatology to external standalone packages.

0.14 - Aug, 2015

	Interface for human calibration of anomaly detection

	Implemented fuzzy logic criteria

0.13 - July, 2015

	Major improvements in the anomaly detection submodule

	Partial support to thermosalinographs (TSG)

	Working on WOA test to generalize for profiles and tracks

	Adding .json to default QC configuration filenames

	Moved load_cfg from qc to utils

0.12

Since 0.9 some of the most important changes.

	Following OceanSites vocabulary for variable names (PRES, TEMP, PSAL…)

	Partial support to Argo profiles

	Added density invertion test

	Included haversine to avoid dependency on MAUD.

	tox and travis support.

0.9 - Dec, 2013

	A few people already had access but at this point it went open publicly.

0.7.3

	Creating fProfileQC()

0.5.4 - Nov, 2013

	Including Tukey53H test

0.5.0

	Implemented ProfileQCCollection (later moved to PySeabird).

0.4 - Sep, 2013

	Gradient and spike tests with depth conditional thresholds.

	CruiseQC (later replaced by ProfileQCCollection).

	Use default threshold values for the QC tests.

0.1 - May 24, 2013

	Renamed to CoTeDe. Another major refactoring.

QC_ML - 2011

	Renamed to QC_ML, a machine learning approach to quality control hydrographic data, the initial prototype of Anomaly Detection approach. I refactored the system I developed to quality control TSG, to evaluate the PIRATA’s CTD stations for INPE. At that point I migrated from my personal Subversion server to Bitbucket, and I lost the detailed history and logs before that.

2008

	Modified to parse Seabird CTDs so that the .cnv files could be directly QCed.

2006

	A system to automaticaly quality control TSG data on realtime for AOML-NOAA. The data was handled in a PostgreSQL database, and only the traditional tests were applied, i.e. a sequence of binary tests (spike, gradient, valid position …).

Used by

Projects

This is an incomplete list of projects that used or have been using CoTeDe. If your project is not listed here, please let me know. Thanks!

	Support for automatic QC plus a novel approach to optimize the expert QC effort for the International Quality Controlled Ocean Database (IQuOD) [http://www.iquod.org/], since 2015.

	CTD hydrographic operations by the National Institute for Space Research (INPE), 2011.

	Thermosalinograph operations of the Atlantic Oceanographic and Meteorological Laboratory - NOAA (AOML), 2006.

Publications

To cite CoTeDe, please include the reference below in your bibliography:

@article{cotede,
 author = {Guilherme P. Castelão},
 title = {A Framework to Quality Control Oceanographic Data},
 journal = {Journal of Open Source Software},
 year = {2020},
 month=mar,
 publisher={The Open Journal},
 doi={TO BE DEFINED}
}

Who would like to be the first one to cite CoTeDe?

cotede.ProfileQC

	
class cotede.ProfileQC(input, cfg=None, saveauxiliary=True, verbose=True, attributes=None)

	Quality Control a CTD profile

	
__init__(input, cfg=None, saveauxiliary=True, verbose=True, attributes=None)

	A procedure to QC a hydrographic profile

	Parameters:

	
	input (dict-like) – An object with the data to be evaluated that responds like a
dictionary. For instance, a variable pressure should be acessible
as input[‘pressure’], or temperature as input[‘temperature’].
This input object could have attrs, with global attributes for
the whole dataset. For instance, input.attrs[‘lat’] would give the
nominal latitude of the dataset input.

	cfg (dict-like or str) – The QC configuration to be used in the current profile. If a
string, it should be the name of a JSON QC configuration. Check
the manual for the available options.

	saveauxiliary (bool) – Save features as .features

	verbose (bool) – Show extra information

	attributes (dict-like, optional) – If given, append/overwirte the input.attrs

	
keys(self): List of input contents

	

Methods

	__init__(input[, cfg, saveauxiliary, ...])

	A procedure to QC a hydrographic profile

	build_features()

	

	evaluate(v, cfg)

	

	evaluate_common(cfg)

	

	keys()

	Return the available keys in self.data

Attributes

	attributes

	Temporary solution while migrating attributes -> attrs

	auxiliary

	

	data

	

cotede.utils.cotederc

	
cotede.utils.cotederc(subdir=None)

	Directory with custom configuration for CoTeDe

To keep the local environment tight, CoTeDe expects to find all local files,
like pre-set QC procedures, in one single place. This function returns the
path to that directory.

	Parameters:

	subdir (str, optional) – Sub-directory inside the base custom directory.

	Returns:

	A path to the local custom files.

The default path is a directory at the user’s home like:

~/.config/cotederc/

	Return type:

	str

Note

That default path can be modified by defining the environment variable
COTEDE_DIR. On bash that could be done like:

export COTEDE_DIR='/my/other/awesome/path/'

Note

For windows users the path is automatically adjusted to reflect its
syntax.

Example

A sub-directory for configuration files, named ‘cfg’, can be determined by:

>>> cotederc('cfg')

cotede.utils.list_cfgs

	
cotede.utils.list_cfgs()

	List the available QC procedures, builtin + local

Full QC procedures, defining which tests and respective parameters to be
used, can be saved to be re-used later. Several procedures are built-in
CoTeDe, but the user can create its own collection. This function returns
a list of all procedures available, built-in + the local user collection.

See also

utils.load_cfg

cotede.utils.load_cfg

	
cotede.utils.load_cfg(cfgname='cotede')

	Load a QC configuration

A QC procedure is a sequence of tests, and respective tuning parameters
used to quality control a dataset. This is how the user controls the
QC steps to apply.

	Parameters:

	cfgname (string or dict-list, optional) –
	None: If not given, it will use the CoTeDe’s default configuration,
which is equivalent to use cfgname=’cotede’.

	A config name [string]: A string with the name of a json file
describing the QC procedure. It will first search among the build
in pre-set (ex.: cotede, eurogoos, gtspp, argo, …). If can’t find
a config with that name, it will search at ~/.config/cotederc/cfg/,
or the path defined by the local variable $COTEDE_DIR.

	Inline config [dict-like]: A dictionary describing the variables to
process and which tests to use on each one. A minimalist example to
apply the gradient test in the sea water temperature could be:

>>> {"sea_water_temperature": {"gradient": 3}}

If inherit is used, it should be a string or a list of other
procedures to inherit, where each item has higher priority than the
following ones. For example:

>>> {"inherit": "eurogoos", "sea_water_temperature": {"gradient": 2}}

will use all the setup from eurogoos, and include/overwrite the
gradient test for sea_water_temperature with a threshold of 2.

	Returns:

	cfg – A dictionary defining a full QC procedure that defines which tests to
run on which variables.

	Return type:

	OrderedDict

See also

utils.list_cfgs

Tests for Quality Control

These are the tests available in CoTeDe.
Most of the QC recommended guides follow simmilar procedures with small variations, as described below when relevant.

Valid Date

Check if there is a valid date and time associated with the measurement.

For Argo, the year also must be later than 1997.

For underwater gliders, the year must be later than 1998.

Valid Position

Check if there is a valid position associated with the measurement.
It should have a latitude between -90 and 90, and a longitude between -180 and 360.

GTSPP restricts the longitude range to between -180 and 180 degrees.

Location at Sea

Check if the position is at sea by using a bathymetry database.
If not specified, it is used ETOPO1, a bathymetry with resolution of 1 minute.
This test implies approval on Valid Position.

If the position is determined at sea, GTSPP also evaluates the sounding, if present, but that is redundant to the Sounding Test, so this part is neglected in CoTeDe.

Global Range

This test evaluates if the measurement is a possible value in the ocean in normal conditions.
The thresholds used are extreme values, wide enough to accommodate all possible values and do not discard uncommon, but possible, conditions.

Regional Range

This test is equivalent to the Global Range but with a horizontal domain where it is applicable. Good examples are the Mediterranean Sea and the Red Sea, where the feasible range is more restrictive than required for the Global Range.

Regional Range was first introduced in the GTSPP manual 1990.

Note

This test requires the Python package
Shapely [https://github.com/Toblerity/Shapely] to read a polygon
geometry and evaluate which positions are within that domain.

GTSPP also requires the maximum depth to be less than 5200m in the Mediterranean Sea, and less than 3500m in the Red Sea.

Profile Envelop

This test is equivalent to the Global Range but with a vertical domain where it is applicable, i.e. it defines the acceptable range per layer.
For instance, GTSPP defines that deeper than 1100m up to 3000m the acceptable temperature range is from -1.5C to 18C.

Profile Envelop was first introduced in the GTSPP manual 1990.

Gradient

This test compares

[image: X_i = \left| V_i - \frac{V_{i+1} + V_{i-1}}{2} \right|]

Gradient Depth Conditional

Spike

[image: X_i = \left| V_i - \frac{V_{i+1} + V_{i-1}}{2} \right| - \left| \frac{V_{i+1} - V_{i-1}}{2} \right|]

Spike Depth Conditional

Tukey 53H

This method to detect spikes is based on the procedure initially proposed by Goring & Nikora 2002 for Acoustic Doppler Velocimeters, and similar to the one adopted by Morello 2011.
It takes advantage of the robustness of the median to create a smoother data series, which is then compared with the observation.
This difference is normalized by the standard deviation of the observed data series after removing the large–scale variability.

For one individual measurement [image: x_i], where [image: i] is the position of the observation, it is evaluated as follows:

	[image: x^{(1)}] is the median of the five points from [image: x_{i-2}] to [image: x_{i+2}];

	[image: x^{(2)}] is the median of the three points from [image: x^{(1)}_{i-1}] to [image: x^{(1)}_{i+1}];

	
	[image: x^{(3)}] is the defined by the Hanning smoothing filter:
	[image: \frac{1}{4}\left(x^{(2)}_{i-1} +2x^{(2)}_{i} +x^{(2)}_{i+1} \right)]

	[image: x_i] is a spike if [image: \frac{|x_i-x^{(3)}|}{\sigma} > k], where [image: \sigma] is the standard deviation of the lowpass filtered data.

The default behavior in CoTeDe is to flag 4 if the test yields values higher than [image: k=1.5], and flag 1 if it is lower.

Climatology

Compares the measurement with the climatology. The difference can be scaled with the standard deviation of the measurements used to create the climatology, thus normalizing by the expected local variance. For instance, the deep ocean is usually more stable, thus the measurements tend to be more similar, resulting in a smaller standard deviation, so small differences are amplified. In comparison, near the surface the high variability and standard deviation minimizes the differences.

I believe that the oldest reference for this test is from GTSPP, but I need to confirm that.

CoTeDe allows to use the standard error to compensate for regions with few measurements. Some regions in the oceans, mostly in deep layers, the available measuremnts are scarce. To distinguish a climatology estimate based on hunderds of measurements versus another with 5 or less measuremnts, the standard error can be used as a tolerance for that estimate. This compensation was first proposed here, in CoTeDe.

[image: X_i = \frac{V_{it} - <V_t>}{\sigma}]

	GTSPP refer to 4 different climatologies to test, which are not implemente in CoTeDe::
	
	Levitus Seasonal

	Emery and Dewar

	Asheville

	Leviturs Monthly

QARTOD climatological test is based on range

World Ocean Atlas (WOA)

Use the World Ocean Atlas [https://www.nodc.noaa.gov/OC5/woa18/] as reference.

CSIRO Atlas of Regional Seas (CARS)

Use CSIRO Atlas of Regional Seas [http://www.marine.csiro.au/atla] as reference.

Rate of Change

For QARTOD, the delta change is normalized by the standard deviation.

Density Inversion

This test looks for density inversions in the water column, i.e. higher density above lower density.

Since density inversion is unstable it is not expected to be observed in nature in normal conditions. Note that weak inversions migth be observed near the surface under special conditions of sea surface heat fluxes. Sometimes a small negative threshold is used.

Density Inversion was first introduced in the GTSPP manual 1990.

Constant Cluster

For Argo …

This test evaluates a cluster of adjacent measurements that are identical or nearly-identical.
This was implemented in CoTeDe as a generalization of the tests: Constant Profile, Stuck Value, Flat Line.

The Constant Profile tests was first introduced in the GTSPP manual 1990.

GTSPP call it Constant Profile test, and requires the full profile to be identical 3 or more measurements.

Deepest Pressure

Check for each measurement if the reference pressure (depth) is deeper than the operational limit for that sensor/platform. For instance, the Argo Solo-II operates up to 2000m while the Deep Solo goes up to 6000m. Measurements deeper than that suggest a bad vertical position.

Reference: Argo QC manual 2.9.1

Digit Rollover

Every sensor has a limit of bits available to store the sample value, with this limit planned to cover the possible range.
A spurious value over the bit range would be recorded as the scale rollover, resulting in a misleading value inside the possible scale.
This test identifies extreme jumps on consecutive measurements, that are wider than expected, suggesting a rollover error.

The difference on consecutive measurements must be smaller or equal to the threshold to be approved.

Monotonic Vertical Displacement

Evaluates the vertical movement of a profiling platform.
If the vertical movement stops, like in a constant depth, all measurements without vertical displacement, except the first one, are flagged bad.
If there is an inversion, all measurements in the inverted sequence are flagged bad.

The vertical movement is usually infered by the records of pressure or depth along the time.

The argument from this test might come from the assimetry of every sampling platform.
A CTD in a rosette usually samples in the downcast so the CTD itself measures a water parcel less disturbed by the sampling bottles and the rest of the rosette.
Spray underwater gliders have the CTD intake in the upper part of the hull, hence the ascencion phase of the dive leads to cleaner samples.
Therefore, a change in the “flight” pattern wouldn’t mean a bad measurement per se, but an inconsistent measurement with he previous and following values.

GTSPP evaluates depth.

Argo evaluates pressure and is named ‘pressure increasing’.

 _images/math/c67734af70861b2bd4dedf5c41c9aad231466f84.png

_images/math/cda79c9e5fdc48af4f4f0ada63c70018d889b8da.png

_images/math/fbf6037d18827de74aa53dd980eaacf675e1f90f.png

_images/math/f38e95e6582d4c339a524ef77c7bb5c1d63eb38a.png
e d}

>k

_images/math/f6f337e37d0242310b5f7e3efc748cc6869bc086.png

_static/minus.png

_static/plus.png

_static/file.png

_images/math/0055d1e2d024ba0a8e5255835e56e5b46af7677a.png

_images/math/2ba373fa8ece527de541e99868f08fef80fd1d55.png

nav.xhtml

 Table of Contents

 		
 CoTeDe: Quality Control of Oceanographic Data

 		
 Overview

 		
 CoTeDe

 		
 Why CoTeDe

 		
 Documentation

 		
 Citation

 		
 Installation

 		
 Requirements

 		
 Optional requirement

 		
 Installing CoTeDe

 		
 Virtual Environments

 		
 Using pip

 		
 Custom Install

 		
 Last night’s version

 		
 Custom setup

 		
 Optional

 		
 Climatology and bathymetry

 		
 Data Model

 		
 Data

 		
 Metadata

 		
 Minimalist solution

 		
 Getting Started with CoTeDe

 		
 Inside python

 		
 More examples

 		
 Tests for Quality Control

 		
 Flags

 		
 Quality Control Procedures

 		
 Profile

 		
 References

_images/math/64f90ba461251307e0a9576334d96d328089151a.png

_images/math/aae5953afe70d4cda081b75bc688eb08b5fe4562.png

_images/math/524041fd323eece628ba9f863f522e6f08cb151c.png

_images/math/5aa339d4daf45a810dda332e3c80a0698e526e04.png

_images/math/b238041fc0ae3c056fec3531433312ea3f840483.png

_images/math/b52df27bfb0b1e3af0c2c68a7b9da459178c2a7d.png

_images/math/b1df2ea7f67bb391902b2db2fb46fac487c3d243.png

_images/math/b23633b86a13a9f48542aefc34d3ed0f36e47b20.png

_images/math/bc06bc76bb4355ad6f55ad6d8c04457f81719f24.png

